Boundary Integral Equations for the Laplace–Beltrami Operator

نویسنده

  • O. Steinbach
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of the point integral method for Laplace–Beltrami equation on point cloud

The Laplace–Beltrami operator, a fundamental object associated with Riemannian manifolds, encodes all intrinsic geometry of manifolds and has many desirable properties. Recently, we proposed the point integral method (PIM), a novel numerical method for discretizing the Laplace–Beltrami operator on point clouds (Li et al. in Commun Comput Phys 22(1):228–258, 2017). In this paper, we analyze the ...

متن کامل

Finite element method to solve the spectral problem for arbitrary self-adjoint extensions of the Laplace-Beltrami operator on manifolds with a boundary

A numerical scheme to compute the spectrum of a large class of self-adjoint extensions of the Laplace-Beltrami operator on manifolds with boundary in any dimension is presented. The algorithm is based on the characterisation of a large class of self-adjoint extensions of Laplace-Beltrami operators in terms of their associated quadratic forms. The convergence of the scheme is proved. A two-dimen...

متن کامل

ON THE ABSOLUTELY CONTINUOUS SPECTRUM OF THE LAPLACE-BELTRAMI OPERATOR ACTING ON p-FORMS FOR A CLASS OF WARPED PRODUCT METRICS

We explicitely compute the absolutely continuous spectrum of the Laplace-Beltrami operator for p-forms for the class of warped product metrics dσ = ydy + ydθ S , where y is a boundary defining function on the unit ball B(0, 1) in R .

متن کامل

Convergence of Discrete Laplace-Beltrami Operators over Surfaces

The convergence property of the discrete Laplace-Beltrami operator is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. The aim of this paper is to review several already used discrete Laplace-Beltrami operators over triangulated surface and study numerically as well as theoretically their conv...

متن کامل

Discrete Laplace-Beltrami operators and their convergence

The convergence property of the discrete Laplace–Beltrami operators is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. In this paper we propose several simple discretization schemes of Laplace–Beltrami operators over triangulated surfaces. Convergence results for these discrete Laplace–Beltra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017